

How low (carbon) can you go? – Going below zero with bio-based materials

Callum Hill, NIBIO

Why this matters

Why use biogenic materials in construction?

 Prior to the impact of the industrial revolution, the atmospheric carbon cycled through the biosphere, which was in equilibrium with the atmosphere

Impact of fossil CO₂

 With the advent of the industrial revolution, carbon from fossil sources was added to the atmosphere

Keeling curve

CARBON DIOXIDE CONCENTRATION AT MAUNA LOA OBSERVATORY

CO₂ levels and global temperature

Annual CO₂ emissions by world region

Annual carbon dioxide (CO2) emissions measured in billion tonnes (Gt) per year

Source: Carbon Dioxide Information Analysis Center (CDIAC)

CC BY-SA

Note: Emissions data have been converted from units of carbon to carbon dioxide (CO2) using a conversion factor of 3.67. Regions denoted "other" are given as regional totals minus emissions from the EU-28, USA, China and India. Here, we have rephrased the general term "bunker (fuels)" as "international aviation and maritime transport" for clarity.

CO2 emissions per capita vs GDP per capita, 2014

Carbon dioxide (CO₂) emissions per capita, measured in tonnes per person per year, versus gross domestic product (GDP) per capita, measured in 2011 international-\$.

CO₂ Emissions Are Still Rising

Human-caused greenhouse gas emissions had appeared to be leveling off, but new research shows 2017 is headed for a new high. The future projections show how emissions levels translate to temperature rise.

FOSSIL FUEL AND LAND-USE CO₂ EMISSIONS In gigatons, with corresponding temperature rise, projected to 2100

SOURCE: Global Carbon Project 2017

InsideClimate News

Linear flow

The circular economy

1970

1994

Pb in US

31/01/2019

14

10 year lifetime

90% recycling rate

The global carbon cycle and biogenic materials

Stocks and flows

Storing atmospheric carbon in buildings

Sequestered carbon in wood

ISOBIO objectives

'To complete, by M48, life cycle assessment (LCA) and life cycle costing (LCC) of the ISOBIO products with the aim to deliver 50% reductions in embodied energy and carbon levels,'

ISOBIO structural panel

ISOBIO internal retrofit

ISIBIO external retrofit

GWP of the three ISOBIO panels

But – this includes project transport!

The total GWP impact of the ISOBIO demonstration panel is 43.2 kg CO_2 eq. per m^2 . Of which 15.3 kg CO_2 eq. is due to transportation

Without project transport

50% reduction in carbon levels

- Compare ISOBIO structural panel with state of the art reference walls in UK and Spain
- 1m² of wall

GWP ISOBIO structural panel vs reference

System	U (W/m².K)	GWP (kg CO ₂ e)
ISOBIO	0.18	27.5
UK reference	0.28	102
UK reference	0.18	114
ES reference	1.20	67
ES reference	0.18	102

Embodied energy

System	U (W/m².K)	EE (MJ/m²)
ISOBIO	0.18	1260
UK reference	0.28	1090
UK reference	0.18	1170
ES reference	1.20	712
ES reference	0.18	799

Calorific content of biological material

Panel	Embodied energy (MJ/m²)	Inherent energy (MJ/m²)
ISOBIO structural	1260	1681
ISOBIO internal retrofit	410	386
ISOBIO external retrofit	435	296

If recoverable energy stored in the ISOBIO panels is taken into account, the structural panel total is – 421 MJ/m² (negative) – more energy can be recovered at end of life compared with energy used in production

Questions?

